
Issue #4 July 2017

zxzine

zxzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

ZXzine is published as a service
to the Sinclair ZX81 community.
Writers are invited to submit
articles for publication. Readers
are invited to submit article
ideas.

Created using Open
Source Tools:

 OpenOffice
 Scribus
 Gimp
 SZ81
 EightyOne

Copyright 2017

Timothy Swenson

Creative Commons License
 Attribution
 NonCommercial
 ShareAlike

You are free:

 To copy, distribute,
display, and perform
the work.

 To make derivitive
works.

 To redistribute the
work.

Table of Contents

Editorial 1

Orbit 1

Random Number with Assembly 1

Partial Pascal 2

sz81 Emulator 3

Basic Computer Games 5

Saving Screen Blocks 5

Berch Assembler & Disassembler 6

z80dasm 8

Aardvark Adventures 9

Page 1

Editorial

Slow and steady, that is how ZXzine comes along.
It has not been a year since the last issue, but by
only a few months. Luckily as I was putting this
issue together some interesting article ideas came
up, so I hope this issue will be worth the wait.

It's always interesting juggling working on the
ZX81, the QL and other hobbies. It was Rob
Heaton of the QL Forums that pinged me about "the
next" issue and got me working on this issue. Like
always there is a little history and some
programming articles. It's really just those things
that interest me on the ZX81.

Orbit

Back in college I wrote a program for a graphics
class that I had picked up from a friend. It was a
simple program that simulated an object orbiting
around a planet or sun. I had originally written it
for the QL then ported it to TurboPascal for the
graphics class. I recently did a "fancier" version for
the QL and thought I would do a version for the
ZX81.

The program starts off with a planet or sun printed
on the screen and a object (satellite or such) is
represented by a single dot (or PLOT point). The
object has the right velocity to orbit around the
planet. The orbit is shown by a trail of dots. The
trail is only 10 dots long and previous dots are

removed from the screen. This shows the orbit of
the object, but does not clutter the screen with more
and more dots.

The user can influence the object by using the
arrow keys. Hitting the up arrow will give some
thrust in the up direction to the object (up in relation
to the viewer and not the sun/planet). Same goes
for the other keys. With a little thrust in the right
direction at the right time, the shape of the orbit can
be made more elliptical. Be careful of using too
much thrust as the object can be sent right out of
orbit.

The program comes in both BASIC and C. The
BASIC version is a little slow. The first version
that I tried with C was too fast, so I added a delay to
make it a little slower allowing the user time to put
some input in. The nonslow C version is listed as
orbit2.c.

Random Number with Assembly

Since having to come up with a random number
generator with SmalC on the QL, I've been
interested in random number generators. When
thinking about writing one program in assembly, I
needed a random number generator. A quick
Google search found a number. The problem was
which one to use or in other words, which one was
good enough to use. I decided to put them to the
test.

I took a number of those that I found online, put a
test program around them and had each one
generate 100 random number in the range from 07
(an easy range with binary numbers). All of the
generators created an 8bit number (0255), but to
keep the tracking simple, use the SRL command a
number of times to divide by two until I had a range
between 0 and 7.

After running the test programs, I counted how
many times each random number was generated. I
created a spreadsheet with the output from 6
different generators. My first generator did not pass
the test, as it really did not generate a truly random
set of numbers. So, I did the spreadsheet with #2
through #5.

Page 2

The spreadsheet shows the results. The standard
deviation value shows how far apart the count is
between the rolled numbers. In theory, count for

each number rolled should be equal. If I let the test
program go for a thousand iterations, the numbers
might be closer, but to keep it simple, I stayed with
just 100 iterations. The lower the standard
deviation is the better the random number
generator.

The standard deviation for RND3 was the best at
2.72 with RND2 coming second at 2.92. RND4
and RND5 are less random, but they are shorter and
would work if memory is tight. I did not test for
speed, but I don't think any of the random number
generators are slow enough to cause a processing
issue.

Partial Pascal

In looking to see what other languages are available
for the ZX81, I ran across one Partial Pascal,
probably the only native structured programming
language for the ZX81. It was written, of all places,
Wheaton, Illinois, by Mike Amling. Partial Pascal
can be found from a number of download sites. It
is sometimes listed as "Pookah Partial Pascal". I'm
guessing Pookah is the person that converted it
from tape to .p format. Even though the software is
available, it really is not usable because the manual
is missing. All that I know about Partial Pascal
comes from Ads, articles or tinkering with the
software.

Partial Pascal has three sections; an editor, the
compiler, and executing the programs. Since most

ZX81's did not have a disk drive, Partial Pascal
saved the Pascal code to tape, to be read in later by
the compiler. The compiler then saved the finished

executable to tape, which was
then read in by the part of the
program to execute the code.

As far as I know, this was the
only program and/or language
on the ZX81 that did this. Most
of the others save snapshots of
ZX81 memory with all of the
data (like VuCalc).

Partial Pascal. as the name
implies, does not support the
full Pascal language. From the

advertisement for Partial Pascal, it had the
following language features:

IF... THEN .. ELSE....
CASE statement
FOR loops
FUNCTION
PROCEDURE

It does lack:
records, set,
label, goto
and reals.

The system
is listed a
"device
independent
" meaning
that data can
be written to
the screen,
the printer,
and even
tape. Data
can also be
read from
the tape to
the program.
It would be
interesting to
know if a
simple text

Page 3

file with numeric data could be created with the text
editor and then read in by a Pascal program.

The compiler has a full screen editor with 22 lines
for coding. The advertisement lists the different
commands that can be run, so it might be a modeed
editor, like VI, where editing and running
commands happen at different times. The
advertisement mentions that you can "save, load or
merge
from tape."

Once the code is written, it is passed through the
compiler, then it can be read in again to be
executed. The advertisement lists the whole
package as " The Partial Pascal programming
package includes editor, compiler, example
programs, runtime interpreter and user manual."

What is interesting is that Pascal was originally
written to be used with 9track tape drives, which
were pretty standard devices in the computer room
when Pascal was written. By the 80's, Pascal had
moved from tape systems to disk systems. Here
was Pascal being taken back to a tape system.

The only reference that I can find of the compiler
being used is by Edward Snow, who wrote an
article for the North American Timex/Sinclair User
Group newsletter on benchmarking. He used Basic,
Forth and Pascal to see how each did on the ZX81.
He actually published the source code to his bench
marking program. The article was published in the
Spring of 1992.

It took a lot of work to get a Pascal parser, tokenizer
and compiler to fit on the ZX81. Given the

compilers reliance on the tape system, even with the
manual, I don't think the compiler would work on
the newer emulators.

In a series of photographs from the 1987 Timex
Sinclair Computer Fest with Mike Amling of
Semper Software at his booth, looking completely
bored. It sounds like most of the attendees did not
realize the significance of getting Pascal to run on a
16K system.

sz81 emulator

When I was running Windows on my laptop, I used
EightyOne as my ZX81 emulator. Moving to Linux
required that I find a new emulator that was native
to Linux. After searching online, I found sz81 an
emulator that is based on Ian Collier's xz80 and
Russell Marks's z81.

sz81 comes as a source code release in a tar.gz file.
It requires a compiler to compile the program and
GCC is the recommendation. Another requirement
is the SDL (Simple DirectMedia Layer) graphics
library. I downloaded the sz81 tar.gz file, unzipped,
untared and ran the make command to compile it.
Once compiled, there is a sz81 binary file in the
source directory. To start the emulator I created a

desktop shortcut on my desktop, using the icon that
was in package.

sz81 starts quickly and takes a few seconds to get to
the K cursor. The default configuration is the
ZX81, but that can be changed to the ZX80 if
needed. Clicking a mouse anywhere in the

Page 4

emulator window will bring up the menu and a
virtual keyboard. The menu is used for controlling
the emulator, like doing a reset, loading .P files,
changing the hardware configuration, etc. The
virtual keyboard is an exact copy of the ZX81

keyboard. It can be used as a reminder what keys do
what or the mouse can be used to click on the keys
like a real keyboard. I hardly type programs in the
emulator, and use tools that create .P files. I usually
just have to hit R for RUN to start the programs
after loading them.

Loading .P files is simple with a mouse driven
menu system that is used to change directories and
drill down to the location of the .P files. sz81 is
installed in its own directory and I keep my ZX81
files in a different directory, so I have to go up one
level, and then down the “zx81” directory to get to
the files I want to load.

One limitation I found with sz81 was the inability
to do hires graphics. The version that I was using
was 2.1.7. For a long time that was the latest

version available. I then found that E. Olofsen had
picked up the development of sz81 and came out
with version 2.2.0, which does support hires
graphics. The most recent release is 2.3.6, but I
think I’ll stay with 2.2.0 for a while.

sz81 does come with some demo binaries, including
a large number of 1K hires games. One interesting
demo is an audio demo using the Bi Pak Zon X81
programmable sound generator (PSG) emulation. It
shows how three channel sound can be used. The
source code for the demo. Doing a Google search I
found an online version of the manual for the Zon
X81. I had heard of the PSG but never bought it
or had seen it. When I ran the sound demo I was

surprised by the three channel sound.

sz81 also comes with the Open81 ROM, which is a
source code release version of the T/S 1000 or
improved ZX81 ROM. To create a ROM from the
Open81 ASM file, Pasmo is needed. I have been
using Pasmo for a while, so I just compiled the
Open81 ROM and used it instead of the default
zx81.rom file. So far I have yet to see any issues.

Page 5

There are a number of features of sz81 that I have
yet to tinker with. I just wanted a good solid, quick,
ZX81 emulator for Linux and sz81 has met the bill.
The latest versions of sz81 can be found at:

http://rullf2.xs4all.nl/sz81/

Basic Computer Games

The ZX81 was first publicly advertized in the
October 1981 edition of Popular Science. I was a
senior in high school and had been looking to buy a
computer and had some funds saved up. I quickly
sent in the order for the ZX81 and received it in late
November.

Since the ZX81 was so new to the market, there
were no books available at any bookstore. The three
computer shops in town did not carry the ZX81 so
they did not carry any books. What I did find at my
local
bookstore
was "Basic
Computer
Games" by
David Ahl,
the
Microcomp
uter
edition,
published
in 1978.
The book
is a
collection
of short
computer
games
written in
Basic. The first edition of the book was published
by Digital Equipment Corp. (DEC) in 1973 and
written in a variety of Basic dialects. The
Microcomputer version had the games written for
Microsoft Basic.

Microsoft Basic was the version of Basic on the
Altair and was similar to the Basic for the Apple II.
The book listed ways to convert the programs for
Basic on the Tandy Model 1, SWTPC 6800,

Processor Technology SOL, IMSAI, Ohio
Scientific, and Northstar Horizon. Most of these
systems were S100 busbased and ran a version of
CP/M.

The programs were tested on an Altair and a Model
43 Teletype machine was used for generating the
printouts and the program examples. The programs
were all of the type that were originally designed to
be run on a teletype machine, where all output was
sent to a printer.

There is 101 Basic games in the book, from Acey
Duecy to Word. Some games were classic games,
like Checkers, Hangman, Blackjack, and Reverse.
Some were computer only games, like Life,
Mugwump, Slalom, and Super Star Trek. The book
was also illustrated with robots acting out the
games. The illustrations kept the book interesting
to look at and the games made the book interesting
to read and understand what is going on.

The book was useful in that it taught me some Basic
techniques that were not in the ZX81 Users Guide.
I learned a lot from porting the programs to the
ZX81, changing them to work with graphics. I
would use the games as a start of a program idea. I
would then use what I liked from the game code,
adding what I needed to make it run on the ZX81.
If I had a different way of doing something, I would
use my way.

The book is now a nice nostalgic read, taking me
back more than 35 years. The book is available
from the following link:

https://annarchive.com/files/Basic_Computer_Gam
es_Microcomputer_Edition.pdf

Saving Screen Blocks

The ZX81 has a very simple screen memory layout.
It is text only and each location on the screen is a
single byte. This makes it easy to understand and
easy to manipulate.

With the concept of windows on other computers, I
wondered about saving parts to the screen and then
restoring it after a period of time. I came up with

Page 6

two routines, saveblk and
returnblk, to save a block
of screen memory and
then restoring it back to
the screen. To keep
things simple, the blocks
are saved to an array.
Each routine takes a set
of coordinates, a starting
X,Y screen location and
an ending X,Y screen
location. The program
does not check to confirm
that the saveblk or
returnblk routines are
given the same
arguments, it is up to the
user to make sure of that.
Saveblk read the bytes in
memory from that area of
the screen and saves it to
an array. Returnblk takes
the data in the array and
copies it to the location in
screen memory. The
routines know where the
location of screen
memory is via the system
variable DFILE.

If the dimensions of the
starting X,Y and ending
X,Y are kept, it is possible to use the routines to
move a block of screen memory from one location
to another. Since the array is not cleared after using
returnblk, it is also possible to make copies of the
block around the screen.

The first version
was done in Basic
making easy to
test the routine.
The second
version was
written in C with
Z88DK. Z88DK
has two builtin
functions called
bpeek and bpoke,
short for byte peek
and bype poke.
The functions are
exactly like PEEK
and POKE in
Basic. Using the
functions saves the
trouble of using
pointers to address
memory directly.

It would take more
work to allow
more than one part
of the screen to be
saved at one time
and would likely
need to use a
malloc call in C to
allocate memory
for each call the

routines. Something for another day.

Berch Assembler & Disassembler

Most of the software for the ZX81 originated in the
UK and was brought to the US. I was always
interested in our home grown software. One that I
remember seeing advertised is an assembler and
disassembler from Bob Berch, of Rochester, New
York.

Luckily, someone archived Berch's assembler, both
the software and the manual, and made them
available online. I thought it would be interesting
to give the program a try and see how easy it is to
use. I've included the manual and the software in
the distribution zip file for issue.

/* saves block of screen memory */

saveblk(x1, y1, x2, y2)

unsigned int x1, y1, x2, y2;

{

unsigned int x, y;

unsigned char z;

for (x = x1; x <= x2; x++) {

for (y = y1; y <= y2; y++) {

z = bpeek(dfile + (x * 33) + y

+ 1);

m[(x*MAX_X)+y] = z;

}

}

}

/* restores block of screen memory */

returnblk(x1, y1, x2, y2)

unsigned int x1, y1, x2, y2;

{

unsigned int x, y;

unsigned char z;

for (x = x1; x <= x2; x++) {

for (y = y1; y <= y2; y++) {

z = m[(x*MAX_X)+y];

bpoke((dfile + (x * 33) + y +

1),z);

}

}

}

The program is the type that sits above RAMTOP,
so when a new program is loaded, it is still
available to be used. The assembly code is written
in REM statements. The code looks like this:

30 REM LD A,38

Any comments must be proceeded by a semicolon
(;). The comments can be on a line by themselves
or they can come after the assembly code. For
finished code to be placed in the first REM
statement, the REM statement must first be created.

I decided to write my code outside of the ZX81 and
then use zxtext2p to convert the text file to a .P file.
I added line numbers, but really did not need to.
The test code I used is test.bas.

I loaded the program into my ZX81 emulator. An
introductory screen was shown and the program
was then loaded into higher memory. I hit ShiftQ
to exit the program. I then loaded my test.p
program, making sure to use the version of LOAD
that does not clear all of memory (including above

RAMTOP). I LISTed my program to confirm that
it had loaded correctly.

To start the assembler, I ran the command RAND
USR 30000. The assembly came up showing a
disassembly of lower memory. I hit Z to assembly

my code, then Y to confirm. The program was then
showing on the screen in memory (along with the
memory after my code).

To move the finished code to the REM statement, I
hit the M key (for move) and entered 4082. The
program wants a 4 digit memory location, so it
must be entered in hex. I then did ShiftQ to exit
the assembler, listed my program and noticed that
the REM statement had changed. I deleted all of
the other lines but the REM statement. I added in
the line:

20 RAND USR 16514

I then saved the program. When I loaded the
program, I would hit RUN and it would execute.

For really long programs I can see where deleting
the code in the REM statements could take a little
time.

The next thing I wanted to do was to test the
disassembler part of the program. For this, I
wanted to use a assembly program that I had
compiled with Pasmo. Disassembly was far easier
to do than the assembly. I loaded the program, then
loaded the program that I compiled with Pasmo. It
did the call to the assembly program. The next step
was to point the disassembler to the area in memory

Page 7

where my code as. I hit A and then entered 4082.
Up came the disassembly of my code. At first it
looked odd, because it was in ZX81 character code,
but I just had to hit the D key to toggle from Data
to Disassembly. What was interesting was that the
code that I wrote in assembly was not at 4082, but
stored a few bytes further. It looks like Pasmo had
one assembly line and then a call to where my code
was.

I don't know if I would use the Berch assembler
over something like Pasmo, but it was interesting to
use it and gives the
programmer another option.
If someone is a diehard
user of only the original
hardware, then the Berch
assembler would do well.

z80dasm

For writing assembly
language programs, I use
Pasmo, which is a cross
compiler running on Linux
that takes the ASM code
and converts it into a .P file.
After tinkering with the
Berch assembler and
disassembler, I wondered if
there was a cross
disassembler that I could
use under Linux. After I
Google search, I found
z80dasm.

z80dasm is available for Debianbased systems and
installs with the command:

sudo aptget install z80dasm

If need by the source code can be found on github
or from the link:

https://www.tablix.org/~avian/z80dasm/

The gzipped tar file for version 1.1.3 is only 111K
in size.

After installing it, I started reading the manual.
Basically, you give z80dasm a binary file and it will
disassemble from the start of the file. In the case of
a .P file, the executable code is not at the start of
the file and there is a number of bytes that need to
be skipped.

z80dasm has a block file that is used to tell
z80dasm about blocks of the file and to treat them
as something other than code. For the .P file, I
created a block file with the following entry:

header: start 16385
end 16513 type
bytedata

This, combined with
a command line
argument telling
z80dasm that the start
of the .P file is the
same as ORG 16385,
z80dasm will list the
data before the
executable code as
data. This all
assumes that the
executable code is
stored in a REM
statement.

Since it is hard to tell
when the executable
code ends, I am
unable to create a

block file that tells z80dasm when to stop
disassembling.

; z80dasm 1.1.3

; command line: z80dasm g 16385 b

block.txt o test.out test.P

org 0412dh

defb 000h

defb 000h

..........

..........

defb 000h

defb 076h

ld a,026h

call 00010h

ret

nop

ld bc,0000bh

ld sp,hl

call nc,00bc5h

..........

..........

Page 8

The command line to use with this block file is:

z80dasm g 16385 b block.txt o file.out file.P

The o option is for setting the output file. If left
out, then the output is sent to STDOUT. The last
argument is the .P file to do the disassembly on.

I have tried z80dasm on a second .P file using the
same block file and the results were the same, the
disassembly starting at 16514.

Aardvark Adventures

Aardvark Technical Services was a company
founded in April 1981 by Roger Olsen, in Walled
Lake, Michigan. The company started selling
computer adventure games for a number of
computer systems. An advertisement from 1981
listed the following computer systems; OSI, TRS
80, TRS80 Color, Sinclair, PET, and VIC20.
They would later create games from the Apple II
and C64. The company was advertised as
"Aardvark The Adventure Place"

Aardvark wan ads in a number of magazines for
different computer systems, including Sync
magazine, the number one magazine in the US for
Sinclair computers. A number of the ads that I
remember had the artwork for the game Quest, big
and bold at the top of the ad.

Their ads were full of text describing each game.
The types of adventure games they had were;
Quest, Mars, Pyramid, Earthquake, Derelict,
Haunted House, and so on. Their ads said that all of
the games were available for all of the computer
systems. The prices were $14.95 for games on
cassette and $19.95 for disk version.

Bob Retelle was
one of the
authors that
wrote games for
Aardvark. He
said that
Aardvark was
not known for
the quality of its
games. He said
"I remember
discovering
some of the
bugs of other
games in early testing (it was pretty common for
Rodger to hand out tapes of new games before they
were put in the catalog), but it was like pulling
teeth to get him to fix any of them."

Unlike some other game companies that found
ways to make the games portable across systems,
all of the Aardvark adventure games were written in
the native BASIC for each system. As for porting
the games to different systems, Bob mentions "...
sometimes the original authors did the conversions,
sometimes it was high school kids hired to come
into Aardvark after school who did it."

Later, Aardvark expanded into video games for the
different systems. In the 1983 company catalog,
there is "Zart Invaders" for the Timex/Sinclair
1000, written in machine code by G. Lamon.
Seawolf, also written in machine code for the C64,
Vic20 and Tandy Color Computer.

The company did not survive the early computer
days and wrapped up business in May 1986.

I never did order any games from Aardvark, but
their ads were everywhere and very iconic for the
early days of home computing.

Page 9

